介绍
Kubernetes 支持对节点上的 AMD 和 NVIDIA GPU (图形处理单元)进行管理,目前处于实验状态。
修改docker配置文件
root@hello:~# cat /etc/docker/daemon.json
{
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime",
"runtimeArgs": []
}
},
"data-root": "/var/lib/docker",
"exec-opts": ["native.cgroupdriver=systemd"],
"registry-mirrors": [
"https://docker.mirrors.ustc.edu.cn",
"http://hub-mirror.c.163.com"
],
"insecure-registries": ["127.0.0.1/8"],
"max-concurrent-downloads": 10,
"live-restore": true,
"log-driver": "json-file",
"log-level": "warn",
"log-opts": {
"max-size": "50m",
"max-file": "1"
},
"storage-driver": "overlay2"
}
root@hello:~#
root@hello:~# systemctl daemon-reload
root@hello:~# systemctl start docker
添加标签
root@hello:~# kubectl label nodes 192.168.1.56 nvidia.com/gpu.present=true
root@hello:~# kubectl get nodes -L nvidia.com/gpu.present
NAME STATUS ROLES AGE VERSION GPU.PRESENT
192.168.1.55 Ready,SchedulingDisabled master 128m v1.22.2
192.168.1.56 Ready node 127m v1.22.2 true
root@hello:~#
安装helm仓库
root@hello:~# curl https://baltocdn.com/helm/signing.asc | sudo apt-key add -
root@hello:~# sudo apt-get install apt-transport-https --yes
root@hello:~# echo "deb https://baltocdn.com/helm/stable/debian/ all main" | sudo tee /etc/apt/sources.list.d/helm-stable-debian.list
root@hello:~# sudo apt-get update
root@hello:~# sudo apt-get install helm
helm install \
--version=0.10.0 \
--generate-name \
nvdp/nvidia-device-plugin
查看是否有nvidia
root@hello:~# kubectl describe node 192.168.1.56 | grep nv
nvidia.com/gpu.present=true
nvidia.com/gpu: 1
nvidia.com/gpu: 1
kube-system nvidia-device-plugin-1637728448-fgg2d 0 (0%) 0 (0%) 0 (0%) 0 (0%) 50s
nvidia.com/gpu 0 0
root@hello:~#
下载镜像
root@hello:~# docker pull registry.cn-beijing.aliyuncs.com/ai-samples/tensorflow:1.5.0-devel-gpu
root@hello:~# docker save -o tensorflow-gpu.tar registry.cn-beijing.aliyuncs.com/ai-samples/tensorflow:1.5.0-devel-gpu
root@hello:~# docker load -i tensorflow-gpu.tar
创建tensorflow测试pod
root@hello:~# vim gpu-test.yaml
root@hello:~# cat gpu-test.yaml
apiVersion: v1
kind: Pod
metadata:
name: test-gpu
labels:
test-gpu: "true"
spec:
containers:
- name: training
image: registry.cn-beijing.aliyuncs.com/ai-samples/tensorflow:1.5.0-devel-gpu
command:
- python
- tensorflow-sample-code/tfjob/docker/mnist/main.py
- --max_steps=300
- --data_dir=tensorflow-sample-code/data
resources:
limits:
nvidia.com/gpu: 1
tolerations:
- effect: NoSchedule
operator: Exists
root@hello:~#
root@hello:~# kubectl apply -f gpu-test.yaml
pod/test-gpu created
root@hello:~#
查看日志
root@hello:~# kubectl logs test-gpu
WARNING:tensorflow:From tensorflow-sample-code/tfjob/docker/mnist/main.py:120: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See tf.nn.softmax_cross_entropy_with_logits_v2.
2021-11-24 04:38:50.846973: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:895] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-11-24 04:38:50.847698: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device 0 with properties:
name: Tesla T4 major: 7 minor: 5 memoryClockRate(GHz): 1.59
pciBusID: 0000:00:10.0
totalMemory: 14.75GiB freeMemory: 14.66GiB
2021-11-24 04:38:50.847759: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Tesla T4, pci bus id: 0000:00:10.0, compute capability: 7.5)
root@hello:~#
https://blog.csdn.net/qq_33921750
https://my.oschina.net/u/3981543
https://www.zhihu.com/people/chen-bu-yun-2
https://segmentfault.com/u/hppyvyv6/articles
https://juejin.cn/user/3315782802482007
https://space.bilibili.com/352476552/article
https://cloud.tencent.com/developer/column/93230
知乎、CSDN、开源中国、思否、掘金、哔哩哔哩、腾讯云
本文使用 文章同步助手 同步
评论 (0)